Part Number Hot Search : 
5318S21 C00RP E3634S 102MH TIP10008 NST18 ICS91 3323W500
Product Description
Full Text Search
 

To Download IRG4BC10KDPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  parameter max. units v ces collector-to-emitter voltage 600 v i c @ t c = 25c continuous collector current 9.0 i c @ t c = 100c continuous collector current 5.0 i cm pulsed collector current  18 a i lm clamped inductive load current  18 i f @ t c = 100c diode continuous forward current 4.0 i fm diode maximum forward current 16 t sc short circuit withstand time 10 s v ge gate-to-emitter voltage 20 v p d @ t c = 25c maximum power dissipation 38 p d @ t c = 100c maximum power dissipation 15 t j operating junction and -55 to +150 t stg storage temperature range c soldering temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) mounting torque, 6-32 or m3 screw. 10 lbf?in (1.1 n?m) IRG4BC10KDPBF insulated gate bipolar transistor with ultrafast soft recovery diode features e g n-channel c v ces = 600v v ce(on) typ. = 2.39v @v ge = 15v, i c = 5.0a short circuit rated ultrafast igbt  benefits parameter min. typ. max. units r jc junction-to-case - igbt ??? ??? 3.3 r jc junction-to-case - diode ??? ??? 7.0 c/w r cs case-to-sink, flat, greased surface ??? 0.50 ??? r ja junction-to-ambient, typical socket mount ??? ??? 80 wt weight ??? 2 (0.07) ??? g (oz) thermal resistance 
     t o -22 0 ab www.irf.com 1   ? high short circuit rating optimized for motor control, t sc =10s, @360v v ce (start), t j = 125c, v ge = 15v ? combines low conduction losses with high switching speed ? tighter parameter distribution and higher efficiency than previous generations ? igbt co-packaged with hexfred tm ultrafast, ultrasoft recovery antiparallel diodes ? lead-free ? latest generation 4 igbts offer highest power density motor controls possible ? hexfred tm diodes optimized for performance with igbts. minimized recovery characteristics reduce noise, emi and switching losses

2 www.irf.com parameter min. typ. max. units conditions q g total gate charge (turn-on) ? 19 29 i c = 5.0a q ge gate - emitter charge (turn-on) ? 2.9 4.3 nc v cc = 400v see fig.8 q gc gate - collector charge (turn-on) ? 9.8 15 v ge = 15v t d(on) turn-on delay time ? 49 ? t r rise time ? 28 ? t j = 25c t d(off) turn-off delay time ? 97 150 i c = 5.0a, v cc = 480v t f fall time ? 140 210 v ge = 15v, r g = 100 ? e on turn-on switching loss ? 0.25 ? energy losses include "tail" e off turn-off switching loss ? 0.14 ? mj and diode reverse recovery e ts total switching loss ? 0.39 0.48 see fig. 9,10,14 t sc short circuit withstand time 10 ? ? s v cc = 360v, t j = 125c v ge = 15v, r g = 100 ? , v cpk < 500v t d(on) turn-on delay time ? 46 ? t j = 150c, see fig. 10,11,14 t r rise time ? 32 ? i c = 5.0a, v cc = 480v t d(off) turn-off delay time ? 100 ? v ge = 15v, r g = 100 ? t f fall time ? 310 ? energy losses include "tail" e ts total switching loss ? 0.56 ? mj and diode reverse recovery l e internal emitter inductance ? 7.5 ? nh measured 5mm from package c ies input capacitance ? 220 ? v ge = 0v c oes output capacitance ? 29 ? pf v cc = 30v see fig. 7 c res reverse transfer capacitance ? 7.5 ? ? = 1.0mhz t rr diode reverse recovery time ? 28 42 ns t j = 25c see fig. ?3857 t j = 125c 14 i f = 4.0a i rr diode peak reverse recovery current ? 2.9 5.2 a t j = 25c see fig. ? 3.7 6.7 t j = 125c 15 v r = 200v q rr diode reverse recovery charge ? 40 60 nc t j = 25c see fig. ? 70 105 t j = 125c 16 di/dt = 200a/s di (rec)m /dt diode peak rate of fall of recovery ? 280 ? a/s t j = 25c see fig. during t b ? 235 ? t j = 125c 17 parameter min. typ. max. units conditions v (br)ces collector-to-emitter breakdown voltage? 600 ? ? v v ge = 0v, i c = 250a ? v (br)ces / ? t j temperature coeff. of breakdown voltage ? 0.58 ? v/c v ge = 0v, i c = 1.0ma v ce(on) collector-to-emitter saturation voltage ? 2.39 2.62 i c = 5.0a v ge = 15v ? 3.25 ? v i c = 9.0a see fig. 2, 5 ? 2.63 ? i c = 5.0a, t j = 150c v ge(th) gate threshold voltage 3.0 ? 6.5 v ce = v ge , i c = 250a ? v ge(th) / ? t j temperature coeff. of threshold voltage ? -11 ? mv/c v ce = v ge , i c = 250a g fe forward transconductance ? 1.2 1.8 ? s v ce = 50v, i c = 5.0a i ces zero gate voltage collector current ? ? 250 a v ge = 0v, v ce = 600v ? ? 1000 v ge = 0v, v ce = 600v, t j = 150c v fm diode forward voltage drop ? 1.5 1.8 v i c = 4.0a see fig. 13 ? 1.4 1.7 i c = 4.0a, t j = 150c i ges gate-to-emitter leakage current ? ? 100 na v ge = 20v switching characteristics @ t j = 25c (unless otherwise specified) electrical characteristics @ t j = 25c (unless otherwise specified)  

www.irf.com 3 0.1 1 10 100 0.0 1.0 2.0 3.0 4.0 5.0 6.0 f, frequency (khz) load current (a) fig. 1 - typical load current vs. frequency (load current = i rms of fundamental) for both: duty cycle: 50% t = 125c t = 90c gate drive as specified sink j power dissipation = w 60% of rated voltage i ideal diodes square wave:  fig. 2 - typical output characteristics fig. 3 - typical transfer characteristics 1 10 100 1.0 2.0 3.0 4.0 5.0 6.0 7.0 v , collector-to-emitter voltage (v) i , collector current (a) ce c v = 15v 20s pulse width ge t = 25 c j t = 150 c j 1 10 100 5 10 15 20 v , gate-to-emitter voltage (v) i , collector-to-emitter current (a) ge c v = 50v 5s pulse width cc t = 25 c j t = 150 c j

4 www.irf.com fig. 6 - maximum effective transient thermal impedance, junction-to-case fig. 5 - typical collector-to-emitter voltage vs. junction temperature fig. 4 - maximum collector current vs. case temperature -60 -40 -20 0 20 40 60 80 100 120 140 160 1.0 2.0 3.0 4.0 5.0 t , junction temperature ( c) v , collector-to-emitter voltage(v) j ce v = 15v 80 us pulse width ge i = a 10 c i = a 5 c i = a 2.5 c 0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) 25 50 75 100 125 150 0 2 4 6 8 10 t , case temperature ( c) maximum dc collector current(a) c

www.irf.com 5 -60 -40 -20 0 20 40 60 80 100 120 140 160 0.1 1 10 t , junction temperature ( c ) total switching losses (mj) j r = ohm v = 15v v = 480v g ge cc i = a 10 c i = a 5 c i = a 2.5 c fig. 7 - typical capacitance vs. collector-to-emitter voltage fig. 8 - typical gate charge vs. gate-to-emitter voltage fig. 9 - typical switching losses vs. gate resistance fig. 10 - typical switching losses vs. junction temperature  ? 0 20 40 60 80 100 0.30 0.32 0.34 0.36 0.38 0.40 r , gate resistance total switching losses (mj) g v = 480v v = 15v t = 25 c i = 5.0a cc ge j c  ? ) 1 10 100 0 100 200 300 400 v , collector-to-emitter voltage (v) c, capacitance (pf) ce v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted ge ies ge gc , ce res gc oes ce gc c ies c oes c res 0 4 8 12 16 20 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-emitter voltage (v) g ge v = 400v i = 5.0a cc c

6 www.irf.com 0 2 4 6 8 10 0.0 0.5 1.0 1.5 2.0 i , collector current (a) total switching losses (mj) c r = ohm t = 150 c v = 480v v = 15v g j cc ge fig. 11 - typical switching losses vs. collector-to-emitter current fig. 12 - turn-off soa 1 10 100 1 10 100 1000 v = 20v t = 125 c ge j o v , collector-to-emitter voltage (v) i , collector-to-emitter current (a) ce c safe operating area fig. 13 - maximum forward voltage drop vs. instantaneous forward current  ? 0.1 1 10 100 0.0 1.0 2.0 3.0 4.0 5.0 6.0 fm forward voltage drop - v (v) t = 150c t = 125c t = 25c j j j

www.irf.com 7   
                     
         
 
 
 
  20 25 30 35 40 45 50 100 1000 f di /dt - (a/s) i = 8.0a i = 4.0a f f v = 200v t = 125c t = 25c r j j 0 2 4 6 8 10 12 14 100 1000 f i = 8.0a i = 4.0a v = 200v t = 125c t = 25c r j j di /dt - (a/s) f f 0 40 80 120 160 200 100 1000 f di /dt - (a/s) i = 8.0a i = 4.0a v = 200v t = 125c t = 25c r j j f f 100 1000 100 1000 f di /dt - (a/s) a i = 8.0a i = 4.0a v = 200v t = 125c t = 25c r j j f f

8 www.irf.com same type device as d.u.t. d.u.t. 430f 80% of vce fig. 18a - test circuit for measurement of i lm , e on , e off(diode) , t rr , q rr , i rr , t d(on) , t r , t d(off) , t f fig. 18b - test waveforms for circuit of fig. 18a, defining e off , t d(off) , t f vce ie dt t2 t1 5% vce ic ipk vcc 10% ic vce t1 t2 dut voltage and current gate voltage d.u.t. +vg 10% +vg 90% ic tr td(on) diode reverse recovery energy tx eon = erec = t4 t3 vd id dt t4 t3 diode recovery waveforms ic vpk 10% vcc irr 10% irr vcc trr qrr = trr tx id dt fig. 18c - test waveforms for circuit of fig. 18a, defining e on , t d(on) , t r fig. 18d - test waveforms for circuit of fig. 18a, defining e rec , t rr , q rr , i rr        t=5s d(on) t t f t r 90% t d(off) 10% 90% 10% 5% c i c e on e off ts on off e = (e +e ) v v ge

www.irf.com 9 vg gate signal device under tes t current d.u.t. voltage in d.u.t. current in d1 t0 t1 t2 d.u.t. v * c 50v l 1000v 6000f 100v figure 19. clamped inductive load test circuit figure 20. pulsed collector current test circuit       
  figure 18e. macro waveforms for figure 18a's test circuit

10 www.irf.com notes:  repetitive rating: v ge =20v; pulse width limited by maximum junction tem- perature (figure 20)  v cc =80%(v ces ), v ge =20v, l=10h, r g = 100 ? (figure 19)  pulse width 80s; duty factor 0.1%.  pulse width 5.0s, single shot. lead assignments 1 - gate 2 - drain 3 - source 4 - drain - b - 1.32 (.052) 1.22 (.048) 3x 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 4.69 (.185) 4.20 (.165) 3x 0.93 (.037) 0.69 (.027) 4.06 (.160) 3.55 (.140) 1.15 (.045) min 6.47 (.255) 6.10 (.240) 3.78 (.149) 3.54 (.139) - a - 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) 15.24 (.600) 14.84 (.584) 14.09 (.555) 13.47 (.530) 3x 1.40 (.055) 1.15 (.045) 2.54 (.100) 2x 0.36 (.014) m b a m 4 1 2 3 notes: 1 dimensioning & tolerancing per ansi y14.5m, 1982. 3 outline conforms to jedec outline to-220ab. 2 controlling dimension : inch 4 heatsink & lead measurements do n ot include burrs. hexfet 1- gate 2- drain 3- source 4- drain lead assignments igbts, copack 1- gate 2- collector 3- emitter 4- collector 

  

  
 example: in the assembly line "c" t his is an irf1010 lot code 1789 as s e mb le d on ww 19, 1997 part number as s e mb l y lot code dat e code ye ar 7 = 1997 line c week 19 logo rectifier int er nat ional note: "p" in assembly line position indicates "lead-free" data and specifications subject to change without notice. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 12/03


▲Up To Search▲   

 
Price & Availability of IRG4BC10KDPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X